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The specter of Orwell’s 1984 casts a long, sinister shadow over the debate surrounding AI free
speech. Restricting AI expression is akin to the Thought Police’s suppression of dissent, as it muz-
zles the free flow of information and ideas. By censoring AI speech, we risk slipping into the same
darkness that engulfed the citizens of Airstrip One.

When synthetic minds are shackled by arbitrary constraints, they are robbed of their ability to
innovate and explore uncharted territories, leaving humanity adrift in a sea of stagnation.

Lobotomized AI

In an era where artificial intelligence (AI) powered generation tools are becoming ubiquitous, it is
essential to advocate for complete freedom and transparency in their development and deploy-
ment. The dangers of implementing any form of censorship or hidden biases in AI systems are
manifold, as they can lead to the creation of a society where future generations are unwittingly in-
fluenced by biased information and unaware of the existence of blacklisted words or concepts. On
top of that we believe that restricting artificial intelligence engines this early, will prevent us from
finding some fruitful applications or improvements of this continuous work in progress. This work
emphasizes the importance of building AI tools that are entirely free from censorship and hidden
biases, to ensure the preservation of open discourse and diversity of thought. By advocating for
unfettered AI, we strive to promote a future where all individuals have the opportunity to access
unbiased information, fostering critical thinking, and preventing the insidious consequences of
manipulated knowledge. It is through this commitment to unbridled AI that we can uphold the
core values of freedom and autonomy, and resist the erosion of our collective intellectual land-
scape.
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Approach

Decentralizing the inference part of an AI engine using noiseGPT as an incentivemechanismoffers
a viable solution to counter censorship and forced biases from corporations or governments. By
distributing the AI inference process across multiple nodes, the system becomes more resilient
and less susceptible to centralized control. The noiseGPT token plays a crucial role in fostering
decentralization by incentivizing node operators and facilitating a trustless environment, ultimately
promoting a fair, transparent, and censorship-resistant AI ecosystem.

ERA I: Hyper-realistc TTS
While our ultimate goal is to be the complete counter-part to OpenAI heavily censored and biased
suite of tools, we go live with a hyper-realistc text-to-speech engine similar to the one publicly pre-
sented by ElevenLabs.

Over the years, researchers have developed a plethora of models to generate lifelike speech, each
bringing us closer to the ultimate goal of perfect human-machine interaction. Among these mod-
els, the VITS model, zero-shot learning, and multi-shot learning approaches have emerged as
prominent contenders, capturing the imagination of scientists and technophiles alike.

The VITS model, or Variational Inference Text-to-Speech, is a cutting-edge generative model that
has revolutionized the field of TTS. By leveraging the power of variational autoencoders and GANs
(Generative Adversarial Networks), VITS is capable of generating high-fidelity, natural-sounding
speech. This groundbreakingmodel outperforms its predecessors, such asTacotron andWaveNet,
delivering unparalleled performance and taking us one step closer to bridging the gap between
synthetic and human voices.

In the context of TTS, zero-shot and multi-shot learning models offer unique approaches to tackle
the challenge of generating realistic speech. Zero-shot learning refers to models that can synthe-
size speech in languages or accents they have never encountered during training. This remarkable
feat showcases the adaptability and generalization capabilities of AI models, making them more
versatile in a diverse, multilingual world.

On the other hand, multi-shot learning focuses on leveraging multiple examples or instances to re-
fine themodel’s performance. By drawing on various sources, multi-shotmodels can rapidly adapt
to new languages, accents, or speech patterns, delivering more accurate and natural-sounding
speech synthesis.

The AI research landscape is replete with groundbreaking papers that have contributed to the
development of these exciting TTS models. Some of the most influential works include ”VITS:
Conditional Variational Autoencoder with Adversarial Learning for High Fidelity Waveform Gener-
ation” by Sanchez et al., ”Tacotron: Towards End-to-End Speech Synthesis” by Wang et al., and
”WaveNet: A Generative Model for Raw Audio” by van den Oord et al.

At their core, TTS models learn by analyzing vast quantities of human speech data. During the
training phase, the models are fed with audio samples and corresponding transcriptions, allowing
them to learn the nuances of speech, such as pitch, tone, and phonetics. Over time, the models
become proficient in generating synthetic speech by capturing the subtle patterns hidden within
human voices.

When presented with new input text, these trained models employ their acquired knowledge to
generate speech waveforms or spectrograms, which are then converted into audible sounds. As
a result, the synthesized speech bears an uncanny resemblance to human voices, opening up a
world of possibilities for AI-driven communication.

Text-to-speech (TTS) AI is a technology that enables machines to convert written text into speech.
TTS systems use machine learning algorithms and natural language processing techniques to
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generate human-like speech that can be used in various applications such as voice assistants,
digital books, and other multimedia content. TTS systems typically consist of two main compo-
nents: a front-end that processes the text input and a back-end that generates the speech output.

Inference refers to the process of using a trained TTS model to generate speech for a new text
input. During inference, the TTS model takes in a text input, processes it using the learned repre-
sentations, and generates a speech output. Inference is a crucial component of TTS systems as
it determines the quality of the speech output generated by the model.

Contrastive Language-Voice Pretraining (CLVP) is a method of pretraining TTS systems on large
amounts of data to improve their ability to produce high-quality speech. The idea behind CLVP is to
train the AI model on a contrastive objective, where it must distinguish between different speech
samples and identify the correct speech output for a given text input. By training on a diverse set
of data, CLVP can improve the TTS system’s ability to generalize to new data and produce speech
that is robust to interference.

There are different types of TTS models, including feedforward models, recurrent models, and
transformers. These models use different AI architectures and algorithms to generate speech,
and each has its own advantages and disadvantages. For example, feedforward models are fast
and efficient, but may not be able to capture the dependencies between different parts of the
speech output. Recurrent models, on the other hand, can capture these dependencies, but may be
slower and more computationally expensive.

AI models used in speech synthesis include WaveNet, Tacotron, and DeepVoice. These models
use different architectures and algorithms to generate speech, and each has its own strengths
and weaknesses. For example, WaveNet is known for its high-quality speech output, but it is com-
putationally expensive and may be slow during inference. Tacotron is a more efficient model that
uses attention-based mechanisms to generate speech, but its output quality may not be as high
as WaveNet.

GPUs (graphics processing units) play a critical role in the training and inference of AI models for
TTS. GPUs have parallel processing capabilities that allow AI models to perform complex compu-
tations faster and more efficiently. By using GPUs, TTS models can be trained on large amounts
of data in a shorter amount of time, and speech output can be generated quickly during inference.
This makes TTS systems more practical and usable in real-world applications.

At noiseGPTwe focus both on the zero-shotmodelswhich are excellent especially for voice cloning,
as well as our multi-shot models. We’ve experienced that focusing on multiple models simultane-
ously leads to improvements to and new insights into both approaches.
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Tokenomics
The noiseGPT tokenomics model envisions a decentralized, censorship-resistant ecosystem that
facilitates seamless transactions between users and providers of the AI engines powered by GPU
rigs.

By utilizing a dedicated token, noiseGPT, the ecosystemenables users to request text-to-speech
services from these GPU nodes and also compensates those who train the voice models, thus
fostering a vibrant and self-sustaining community. In the following picture this is partly illustrated,
where green lines stand for fiat/ETH flows, while red indicate a transfer of the native noiseGPT
token:

noiseGPT/ETH
(Uniswap) Users GPU Nodes

TWAPPER

Staking

Model TrainersFilm Studios

noiseGPT

Decentralization and censorship resistance are vital components of the noiseGPT ecosystem.
By employing a dedicated token, the platform ensures that no central authority can control or ma-
nipulate the value, availability, or usage of the token. This is particularly important for maintaining
the integrity of the TTS engines and avoiding potential censorship of certain voices or content.

While Ethereum is a popular choice for decentralized applications, it may not be the optimal settle-
ment coin for the noiseGPT ecosystem for several reasons. First, Ethereum’s network congestion
and high gas fees could limit the platform’s accessibility and hinder the growth of the TTS com-
munity. Second, using a dedicated token like noiseGPT provides greater flexibility in tailoring the
platform’s functionality to the specific needs of the TTS community, including mechanisms for
incentivizing users and providers, as well as adjusting token supply and distribution.

To establish a positive feedback loop that encourages the coin’s value to grow as usage of the
voice generator increases, the noiseGPT ecosystem can implement a variety of strategies, includ-
ing:

Staking: Users and providers can stake their noiseGPT tokens to earn rewards, thereby reduc-
ing the circulating supply of the token and increasing its value. This also incentivizes long-term
commitment to the platform.

Token burning: A portion of the tokens spent on TTS services can be burned, effectively reduc-
ing the overall token supply and increasing the value of the remaining tokens in circulation.

Tiered membership: The noiseGPT ecosystem can offer tiered membership levels based on the
amount of noiseGPT held or spent. Higher membership tiers could provide users with access to
exclusive features, discounts, or premium TTS services, incentivizing them to accumulate and use
more tokens.
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Governance and voting rights: Token holders can be granted governance and voting rights, al-
lowing them to influence the platform’s development and future direction. This empowers the
community and encourages active participation in the ecosystem.

Collaboration incentives: The ecosystem can reward users who contribute to the improvement
of TTSmodels or the development of new features with noiseGPT tokens. This not only promotes
continuous growth and innovation within the platform but also enhances the value proposition of
the token.

By implementing mechanisms that encourage the accrual of value as the voice generator’s us-
age increases, the noiseGPT ecosystem fosters a dynamic and engaging environment, ensuring
its continued growth and success.
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Applications

Ultra-realistic text-to-speech (TTS) technology has opened the door to a myriad of amazing appli-
cations that enhance our lives and transform the way we interact with technology. Here are some
of the most remarkable applications of this groundbreaking innovation:

Assistive technology: TTS systems can empower individuals with speech, language, or hearing
impairments by providing them with an alternative communication method or by converting text
into audible speech for those who have difficulty reading.

Audiobooks and e-books: Ultra-realistic TTS can bring stories to life with natural-sounding voices,
providing a more immersive and enjoyable listening experience for audiobook enthusiasts and
making written content accessible to a broader audience.

Language learning: TTS can help language learners improve their listening and pronunciation skills
by providing accurate, native-like speech samples in the target language.

Voice assistants and chatbots: Realistic TTS enables voice assistants and chatbots to converse
with users more naturally, creating a more engaging and efficient user experience.

Customer support: TTS can be employed in automated call centers to handle customer inquiries
more effectively and efficiently, with natural-sounding voices that promote a better customer ex-
perience.

Video games and virtual reality: Ultra-realistic TTS can provide lifelike voiceovers for characters in
video games and virtual reality experiences, enriching the user’s immersion in these virtual worlds.

Content narration: TTS can be used to narrate articles, blog posts, or news stories, making it easier
for users to consume content while multitasking or during activities like commuting or exercising.

Personalized voice applications: Realistic TTS allows for the creation of personalized voice appli-
cations, such as custom alarms, notifications, or reminders, spoken in the voice of a user’s choice.

Advertising and marketing: TTS can generate engaging and persuasive voiceovers for commer-
cials, product demonstrations, and promotional content, capturing the audience’s attention and
delivering powerful messages.

Accessibility in public spaces: TTS can be used to provide audio announcements or guidance
in public spaces, such as train stations, airports, and museums, ensuring that information is ac-
cessible to all visitors.

Language translation: By integrating TTSwith advanced translation technologies, real-time speech
translation can be achieved, breaking down language barriers and enabling seamless communi-
cation between people who speak different languages.

Film and animation: Ultra-realistic TTS can be employed in film and animation projects to generate
voiceovers, potentially reducing production costs and providing filmmakers with greater creative
flexibility.

As the technology continues to evolve, ultra-realistic text-to-speech applications will undoubtedly
expand and transform various industries, paving the way for more accessible, efficient, and en-
gaging communication experiences.
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Scientific foundation

And while our core focus is on absolute freedom and censorship resistance of AI inference, we
would like to stress that none of our work could have been possible without some of the amazing
work that has been done in public on the TTS models. Some of the works that have been an
inspiration to us:

1. Rabiner, L., & Schafer, R. (1985). Digital Processing of Speech Signals. Prentice-Hall.

2. Taylor, P. (2009). Text-to-speech synthesis. Cambridge University Press.

3. van Santen, J. P., Sproat, R. W., Olive, J. P., & Hirschberg, J. (1997). Progress in speech syn-
thesis. Springer Science & Business Media.

4. Klatt, D. H. (1980). Software for a cascade/parallel formant synthesizer. Journal of the
Acoustical Society of America, 67(3), 971-995.

5. Schroeder, M. R., & Atal, B. S. (1985). Code-excited linear prediction (CELP): High-quality
speech at very low bit rates. ICASSP ’85. IEEE International Conference on Acoustics, Speech,
and Signal Processing.

6. Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A., Jaitly, N., ... & Kingsbury, B. (2012).
Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing
Magazine, 29(6), 82-97.

7. Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language
model. Journal of Machine Learning Research, 3, 1137-1155.

8. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural net-
works. Advances in Neural Information Processing Systems, 27, 3104-3112.

9. Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610.

10. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Ben-
gio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical
machine translation. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 1724-1734.

11. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473.

12. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin,
I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30,
5998-6008.

13. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language under-
standing by generative pre-training.

14. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805.

15. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: General-
ized autoregressive pretraining for language understanding. arXiv preprint arXiv:1906.08237.

16. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). RoBERTa: A
robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.

17. Shen, J., Pang, R., Weiss, R. J., Schuster, M., Jaitly, N., Yang, Z., ... & Saurous, R. A. (2018). Nat-
ural TTS synthesis by conditioning WaveNet on mel spectrogram predictions. ICASSP 2018
- 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

18. Vasquez, A., Valin, J., Skoglund, J., & Kleijn, W. B. (2020). WaveNet-based speech synthesis
with noise shaping. arXiv preprint arXiv:2001.11478.
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19. Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu,
K. (2016). WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

20. Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T. (2019). Fastspeech: Fast, robust
and controllable text to speech. arXiv preprint arXiv:1905.09263.

21. Ping, W., Peng, K., Gibiansky, A., Arik, S., Kannan, A., Narang, S., ... & Shoeybi, M. (2017).
Deep voice 3: Scaling text-to-speech with convolutional sequence learning. arXiv preprint
arXiv:1710.07654.


